Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 772
Filtrar
1.
BMC Psychiatry ; 24(1): 362, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745267

RESUMEN

BACKGROUND: Obsessive-compulsive disorder (OCD) is characterized by persistent, unwanted thoughts and repetitive actions. Such repetitive thoughts and/or behaviors may be reinforced either by reducing anxiety or by avoiding a potential threat or harm, and thus may be rewarding to the individual. The possible involvement of the reward system in the symptomatology of OCD is supported by studies showing altered reward processing in reward-related regions, such as the ventral striatum (VS) and the orbitofrontal cortex (OFC), in adults with OCD. However, it is not clear whether this also applies to adolescents with OCD. METHODS: Using functional magnetic resonance imaging, two sessions were conducted focusing on the anticipation and receipt of monetary reward (1) or loss (2), each contrasted to a verbal (control) condition. In each session, adolescents with OCD (n1=31/n2=26) were compared with typically developing (TD) controls (n1=33/ n2=31), all aged 10-19 years, during the anticipation and feedback phase of an adapted Monetary Incentive Delay task. RESULTS: Data revealed a hyperactivation of the VS, but not the OFC, when anticipating both monetary reward and loss in the OCD compared to the TD group. CONCLUSIONS: These findings suggest that aberrant neural reward and loss processing in OCD is associated with greater motivation to gain or maintain a reward but not with the actual receipt. The greater degree of reward 'wanting' may contribute to adolescents with OCD repeating certain actions more and more frequently, which then become habits (i.e., OCD symptomatology).


Asunto(s)
Anticipación Psicológica , Imagen por Resonancia Magnética , Trastorno Obsesivo Compulsivo , Recompensa , Estriado Ventral , Humanos , Adolescente , Trastorno Obsesivo Compulsivo/fisiopatología , Trastorno Obsesivo Compulsivo/psicología , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Masculino , Femenino , Anticipación Psicológica/fisiología , Estriado Ventral/fisiopatología , Estriado Ventral/diagnóstico por imagen , Adulto Joven , Niño , Corteza Prefrontal/fisiopatología , Corteza Prefrontal/diagnóstico por imagen , Motivación/fisiología
2.
Addict Biol ; 29(5): e13399, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38711213

RESUMEN

Excessive use of the internet, which is a typical scenario of self-control failure, could lead to potential consequences such as anxiety, depression, and diminished academic performance. However, the underlying neuropsychological mechanisms remain poorly understood. This study aims to investigate the structural basis of self-control and internet addiction. In a cohort of 96 internet gamers, we examined the relationships among grey matter volume and white matter integrity within the frontostriatal circuits and internet addiction severity, as well as self-control measures. The results showed a significant and negative correlation between dACC grey matter volume and internet addiction severity (p < 0.001), but not with self-control. Subsequent tractography from the dACC to the bilateral ventral striatum (VS) was conducted. The fractional anisotropy (FA) and radial diffusivity of dACC-right VS pathway was negatively (p = 0.011) and positively (p = 0.020) correlated with internet addiction severity, respectively, and the FA was also positively correlated with self-control (p = 0.036). These associations were not observed for the dACC-left VS pathway. Further mediation analysis demonstrated a significant complete mediation effect of self-control on the relationship between FA of the dACC-right VS pathway and internet addiction severity. Our findings suggest that the dACC-right VS pathway is a critical neural substrate for both internet addiction and self-control. Deficits in this pathway may lead to impaired self-regulation over internet usage, exacerbating the severity of internet addiction.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Gris , Trastorno de Adicción a Internet , Autocontrol , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Masculino , Trastorno de Adicción a Internet/diagnóstico por imagen , Trastorno de Adicción a Internet/fisiopatología , Femenino , Imagen de Difusión Tensora/métodos , Adulto , Adulto Joven , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Estriado Ventral/diagnóstico por imagen , Estriado Ventral/fisiopatología , Estriado Ventral/patología , Índice de Severidad de la Enfermedad , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/patología , Cuerpo Estriado/fisiopatología , Internet , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/patología , Lóbulo Frontal/fisiopatología
3.
Soc Cogn Affect Neurosci ; 19(1)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38619118

RESUMEN

A growing literature links socioeconomic disadvantage and adversity to brain function, including disruptions in reward processing. Less research has examined exposure to community violence (ECV) as a specific adversity related to differences in reward-related brain activation, despite the prevalence of community violence exposure for those living in disadvantaged contexts. The current study tested whether ECV was associated with reward-related ventral striatum (VS) activation after accounting for familial factors associated with differences in reward-related activation (e.g. parenting and family income). Moreover, we tested whether ECV is a mechanism linking socioeconomic disadvantage to reward-related activation in the VS. We utilized data from 444 adolescent twins sampled from birth records and residing in neighborhoods with above-average levels of poverty. ECV was associated with greater reward-related VS activation, and the association remained after accounting for family-level markers of disadvantage. We identified an indirect pathway in which socioeconomic disadvantage predicted greater reward-related activation via greater ECV, over and above family-level adversity. These findings highlight the unique impact of community violence exposure on reward processing and provide a mechanism through which socioeconomic disadvantage may shape brain function.


Asunto(s)
Exposición a la Violencia , Imagen por Resonancia Magnética , Características de la Residencia , Recompensa , Humanos , Masculino , Femenino , Adolescente , Imagen por Resonancia Magnética/métodos , Exposición a la Violencia/psicología , Exposición a la Violencia/estadística & datos numéricos , Características de la Residencia/estadística & datos numéricos , Factores Socioeconómicos , Pobreza/psicología , Estriado Ventral/fisiología , Estriado Ventral/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico , Niño , Disparidades Socioeconómicas en Salud
4.
Transl Psychiatry ; 14(1): 106, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388454

RESUMEN

Animal models of depression show that acute stress negatively impacts functioning in neural regions sensitive to reward and punishment, often manifesting as anhedonic behaviors. However, few human studies have probed stress-induced neural activation changes in relation to anhedonia, which is critical for clarifying risk for affective disorders. Participants (N = 85, 12-14 years-old, 53 female), oversampled for risk of depression, were administered clinical assessments and completed an fMRI guessing task during a baseline (no-stress) period to probe neural response to receipt of rewards and losses. After the initial task run of the fMRI guessing task, participants received an acute stressor and then, were re-administered the guessing task. Including baseline, participants provided up to 10 self-report assessments of life stress and symptoms over a 2 year period. Linear mixed-effects models estimated whether change in neural activation (post- vs. pre-acute stressor) moderated the longitudinal associations between life stress and symptoms. Primary analyses indicated that adolescents with stress-related reductions in right ventral striatum response to rewards exhibited stronger longitudinal associations between life stress and anhedonia severity (ß = -0.06, 95%CI[-0.11, -0.02], p = 0.008, pFDR = 0.048). Secondary analyses showed that longitudinal positive associations between life stress and depression severity were moderated by stress-related increases in dorsal striatum response to rewards (left caudate ß = 0.11, 95%CI[0.07,0.17], p < 0.001, pFDR = 0.002; right caudate ß = 0.07, 95%CI[0.02,0.12], p = 0.002, pFDR = 0.003; left putamen ß = 0.09, 95%CI[0.04, 0.14], p < 0.001, pFDR = 0.002; right putamen ß = 0.08, 95%CI[0.03, 0.12], p < 0.001, pFDR = 0.002). Additionally, longitudinal positive associations among life stress and anxiety severity were moderated by stress-related reductions in dorsal anterior cingulate cortex (ß = -0.07, 95%CI[-0.12,.02], p = 0.008, pFDR = 0.012) and right anterior insula (ß = -0.07, 95%CI[-0.12,-0.02], p = 0.002, pFDR = 0.006) response to loss. All results held when adjusting for comorbid symptoms. Results show convergence with animal models, highlighting mechanisms that may facilitate stress-induced anhedonia as well as a separable pathway for the emergence of depressive and anxiety symptoms.


Asunto(s)
Anhedonia , Estriado Ventral , Adolescente , Humanos , Femenino , Niño , Anhedonia/fisiología , Estudios Longitudinales , Recompensa , Giro del Cíngulo , Imagen por Resonancia Magnética/métodos
5.
Neuropsychopharmacology ; 49(5): 796-805, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38182777

RESUMEN

The human striatum can be subdivided into the caudate, putamen, and nucleus accumbens (NAc). In mice, this roughly corresponds to the dorsal medial striatum (DMS), dorsal lateral striatum (DLS), and ventral striatum (NAc). Each of these structures have some overlapping and distinct functions related to motor control, cognitive processing, motivation, and reward. Previously, we used a "time-of-death" approach to identify diurnal rhythms in RNA transcripts in these three human striatal subregions. Here, we identify molecular rhythms across similar striatal subregions collected from C57BL/6J mice across 6 times of day and compare results to the human striatum. Pathway analysis indicates a large degree of overlap between species in rhythmic transcripts involved in processes like cellular stress, energy metabolism, and translation. Notably, a striking finding in humans is that small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs) are among the most highly rhythmic transcripts in the NAc and this is not conserved in mice, suggesting the rhythmicity of RNA processing in this region could be uniquely human. Furthermore, the peak timing of overlapping rhythmic genes is altered between species, but not consistently in one direction. Taken together, these studies reveal conserved as well as distinct transcriptome rhythms across the human and mouse striatum and are an important step in understanding the normal function of diurnal rhythms in humans and model organisms in these regions and how disruption could lead to pathology.


Asunto(s)
Cuerpo Estriado , Estriado Ventral , Humanos , Ratones , Animales , Ratones Endogámicos C57BL , Cuerpo Estriado/metabolismo , Núcleo Accumbens , Perfilación de la Expresión Génica , Transcriptoma
6.
J Psychopharmacol ; 38(3): 236-246, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38279659

RESUMEN

BACKGROUND: Dysregulated ventral striatum function has been proposed as one important process occurring in individuals with substance use disorder. This study investigates the role of altered reward and loss anticipation, which is an important component of impaired decision-making, impulsivity, and vulnerability to relapse in individuals with amphetamine use disorder (AMP). AIMS: To determine whether AMP is associated with blunted striatum, prefrontal cortex, and insula signals during win and loss anticipation. METHODS: Participants with and without AMP (AMP+ n = 46, AMP- n = 90) from the Tulsa 1000 study completed a monetary incentive delay (MID) task during functional magnetic resonance imaging. RESULTS: Group main effects indicated that: (1) AMP+ exhibited lower bilateral caudate/putamen and left nucleus accumbens signal than AMP- across anticipation of wins and losses; and (2) AMP+ showed slower reaction times than AMP- during loss anticipation. Group*condition interactions demonstrated that AMP+ exhibited greater right amygdala signal than AMP- while anticipating large wins, a pattern that reversed when anticipating small losses. Left caudate/putamen attenuations in AMP+ during small loss anticipation were also evident. Groups did not differ in prefrontal or insula signals. CONCLUSIONS: AMP+ individuals have altered neural processing and response patterns during reward and loss anticipation, potentially reflecting impairments in dopamine function, which may influence their decision-making and reactions to different win/loss scenarios. These findings help to explain why AMP+ have difficulty with decision-making and exhibit a heightened focus on immediate rewards or punishments.


Asunto(s)
Trastornos Relacionados con Sustancias , Estriado Ventral , Humanos , Recompensa , Motivación , Imagen por Resonancia Magnética , Estriado Ventral/diagnóstico por imagen , Anfetaminas
7.
J Neurosci ; 44(5)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296647

RESUMEN

Deciding whether to forego immediate rewards or explore new opportunities is a key component of flexible behavior and is critical for the survival of the species. Although previous studies have shown that different cortical and subcortical areas, including the amygdala and ventral striatum (VS), are implicated in representing the immediate (exploitative) and future (explorative) value of choices, the effect of the motor system used to make choices has not been examined. Here, we tested male rhesus macaques with amygdala or VS lesions on two versions of a three-arm bandit task where choices were registered with either a saccade or an arm movement. In both tasks we presented the monkeys with explore-exploit tradeoffs by periodically replacing familiar options with novel options that had unknown reward probabilities. We found that monkeys explored more with saccades but showed better learning with arm movements. VS lesions caused the monkeys to be more explorative with arm movements and less explorative with saccades, although this may have been due to an overall decrease in performance. VS lesions affected the monkeys' ability to learn novel stimulus-reward associations in both tasks, while after amygdala lesions this effect was stronger when choices were made with saccades. Further, on average, VS and amygdala lesions reduced the monkeys' ability to choose better options only when choices were made with a saccade. These results show that learning reward value associations to manage explore-exploit behaviors is motor system dependent and they further define the contributions of amygdala and VS to reinforcement learning.


Asunto(s)
Conducta de Elección , Estriado Ventral , Animales , Masculino , Macaca mulatta , Refuerzo en Psicología , Amígdala del Cerebelo , Recompensa
8.
Nat Commun ; 15(1): 59, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167691

RESUMEN

The dopaminergic system is firmly implicated in reversal learning but human measurements of dopamine release as a correlate of reversal learning success are lacking. Dopamine release and hemodynamic brain activity in response to unexpected changes in action-outcome probabilities are here explored using simultaneous dynamic [11C]Raclopride PET-fMRI and computational modelling of behavior. When participants encounter reversed reward probabilities during a card guessing game, dopamine release is observed in associative striatum. Individual differences in absolute reward prediction error and sensitivity to errors are associated with peak dopamine receptor occupancy. The fMRI response to perseverance errors at the onset of a reversal spatially overlap with the site of dopamine release. Trial-by-trial fMRI correlates of absolute prediction errors show a response in striatum and association cortices, closely overlapping with the location of dopamine release, and separable from a valence signal in ventral striatum. The results converge to implicate striatal dopamine release in associative striatum as a central component of reversal learning, possibly signifying the need for increased cognitive control when new stimuli-responses should be learned.


Asunto(s)
Dopamina , Estriado Ventral , Humanos , Aprendizaje Inverso/fisiología , Cuerpo Estriado/diagnóstico por imagen , Racloprida , Neostriado , Estriado Ventral/diagnóstico por imagen , Recompensa
9.
Neuron ; 112(1): 73-83.e4, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37865084

RESUMEN

Treatment-resistant obsessive-compulsive disorder (OCD) occurs in approximately one-third of OCD patients. Obsessions may fluctuate over time but often occur or worsen in the presence of internal (emotional state and thoughts) and external (visual and tactile) triggering stimuli. Obsessive thoughts and related compulsive urges fluctuate (are episodic) and so may respond well to a time-locked brain stimulation strategy sensitive and responsive to these symptom fluctuations. Early evidence suggests that neural activity can be captured from ventral striatal regions implicated in OCD to guide such a closed-loop approach. Here, we report on a first-in-human application of responsive deep brain stimulation (rDBS) of the ventral striatum for a treatment-refractory OCD individual who also had comorbid epilepsy. Self-reported obsessive symptoms and provoked OCD-related distress correlated with ventral striatal electrophysiology. rDBS detected the time-domain area-based feature from invasive electroencephalography low-frequency oscillatory power fluctuations that triggered bursts of stimulation to ameliorate OCD symptoms in a closed-loop fashion. rDBS provided rapid, robust, and durable improvement in obsessions and compulsions. These results provide proof of concept for a personalized, physiologically guided DBS strategy for OCD.


Asunto(s)
Estimulación Encefálica Profunda , Trastorno Obsesivo Compulsivo , Estriado Ventral , Humanos , Estimulación Encefálica Profunda/métodos , Resultado del Tratamiento , Trastorno Obsesivo Compulsivo/terapia , Conducta Obsesiva
10.
Eur J Neurosci ; 59(6): 1067-1078, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37985418

RESUMEN

Hypodopaminergia in the ventral striatum is a putative neurobiological correlate of withdrawal in opioid-dependent individuals. This perspective stands in contrast to brain imaging studies with chronic opioid users showing that naloxone-enhanced dopamine (DA) release in the dorsal striatum is positively correlated with withdrawal aversion. Here, we examined regional differences in striatal DA function associated with opioid withdrawal in rats exposed to intermittent morphine injections for 31 days. Basal concentrations of DA were reduced (i.e., indicating a hypodopaminergic state) in the ventral striatum on Day 10 of morphine exposure, whereas a more prolonged period of morphine treatment was required to reveal hypodopaminergia in the dorsal striatum on Day 31. The ventral striatum consistently exhibited naloxone-induced transient reductions in DA below the hypodopaminergic basal levels, whereas morphine enhanced DA efflux. In the dorsal striatum, DA responsivity to naloxone shifted from a significant decrease on Day 10 to a notable increase above hypodopaminergic basal levels on Day 31, corroborating the findings in the human dorsal striatum. Unexpectedly, the magnitude of morphine-evoked increases in DA efflux on Day 31 was significantly blunted relative to values on Day 10. These findings indicate that prolonged-intermittent access to morphine results in a sustained hypodopaminergic state as reflected in basal levels in the striatum, which is accompanied by regional differences in DA responsivity to naloxone and morphine. Overall, our findings suggest that prolonging the duration of morphine exposure to 31 days is sufficient to reveal neuroadaptations that may underlie the transition from initial drug exposure to opioid dependence.


Asunto(s)
Naloxona , Estriado Ventral , Humanos , Ratas , Animales , Naloxona/farmacología , Morfina/farmacología , Dopamina , Analgésicos Opioides/farmacología , Cuerpo Estriado
11.
Neuropsychobiology ; 82(6): 319-345, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37963449

RESUMEN

BACKGROUND: Alcohol-associated alterations of the dopaminergic (DA) system have been investigated via functional single-photon emission tomography (SPECT) positron emission tomography (PET) and imaging methods over many years, investigating presynaptic or postsynaptic markers, such as DA receptor and DA transporter availability, both with and without challenge. This review summarizes SPECT and PET studies on different levels of alcohol consumption to support the dimensional view of alcohol use disorder (AUD), ranging from acute consumption in social drinkers, individuals at high risk to patients with severe AUD and their association with blunted DA neurotransmission. Additionally, confounding factors of PET and SPECT studies of the DA system were discussed. SUMMARY: The included studies provided strong evidence that acute alcohol administration in social drinkers is followed by a DA release, particularly in the ventral striatum. In participants with AUD, DA release appears to be impaired as administration of a psychostimulant is followed by a blunted striatal DA. Furthermore, in recently detoxified participants with AUD, in vivo dopamine D2 and D3 receptor availability appears to be reduced, which may be a predisposing factor or the result of a neuroadaptive process influencing drug-induced DA release. DA transporter availability is reduced in AUD, whereas findings with respect to DA synthesis capacity are controversial. KEY MESSAGES: The DA system seems to be differently impaired during the development and persistence of AUD. In total, challenge studies (acute alcohol or psychostimulant administration) seem to be more consistent in their findings and might be less prone to the effects of confounders. Long-term studies with larger samples are required to better evaluate the alterations during chronic consumption and prolonged abstinence.


Asunto(s)
Alcoholismo , Estimulantes del Sistema Nervioso Central , Estriado Ventral , Humanos , Dopamina , Consumo de Bebidas Alcohólicas , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada de Emisión de Fotón Único , Etanol , Alcoholismo/diagnóstico por imagen
12.
Neuron ; 111(24): 4058-4070.e6, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37883973

RESUMEN

Influential accounts of addiction posit alterations in adaptive behavior driven by deficient dopaminergic prediction errors (PEs), signaling the discrepancy between actual and expected reward. Dopamine neurons encode these error signals in subjective terms, calibrated by individual risk preferences, as "utility" PEs. It remains unclear, however, whether people with drug addiction have PE deficits or their computational source. Here, using an analogous task to prior single-unit studies with known expectancies, we show that fMRI-measured PEs similarly reflect utility PEs. Relative to control participants, people with chronic cocaine addiction demonstrate reduced utility PEs in the dopaminoceptive ventral striatum, with similar trends in orbitofrontal cortex. Dissecting this PE signal into its subcomponent terms attributed these reductions to weaker striatal responses to received reward/utility, whereas suppression of activity with reward expectation was unchanged. These findings support that addiction may fundamentally disrupt PE signaling and reveal an underappreciated role for perceived reward value in this mechanism.


Asunto(s)
Trastornos Relacionados con Cocaína , Estriado Ventral , Humanos , Trastornos Relacionados con Cocaína/diagnóstico por imagen , Recompensa , Corteza Prefrontal/fisiología , Neostriado , Imagen por Resonancia Magnética
13.
Function (Oxf) ; 4(6): zqad056, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841525

RESUMEN

We are constantly bombarded by sensory information and constantly making decisions on how to act. In order to optimally adapt behavior, we must judge which sequences of sensory inputs and actions lead to successful outcomes in specific circumstances. Neuronal circuits of the basal ganglia have been strongly implicated in action selection, as well as the learning and execution of goal-directed behaviors, with accumulating evidence supporting the hypothesis that midbrain dopamine neurons might encode a reward signal useful for learning. Here, we review evidence suggesting that midbrain dopaminergic neurons signal reward prediction error, driving synaptic plasticity in the striatum underlying learning. We focus on phasic increases in action potential firing of midbrain dopamine neurons in response to unexpected rewards. These dopamine neurons prominently innervate the dorsal and ventral striatum. In the striatum, the released dopamine binds to dopamine receptors, where it regulates the plasticity of glutamatergic synapses. The increase of striatal dopamine accompanying an unexpected reward activates dopamine type 1 receptors (D1Rs) initiating a signaling cascade that promotes long-term potentiation of recently active glutamatergic input onto striatonigral neurons. Sensorimotor-evoked glutamatergic input, which is active immediately before reward delivery will thus be strengthened onto neurons in the striatum expressing D1Rs. In turn, these neurons cause disinhibition of brainstem motor centers and disinhibition of the motor thalamus, thus promoting motor output to reinforce rewarded stimulus-action outcomes. Although many details of the hypothesis need further investigation, altogether, it seems likely that dopamine signals in the striatum might underlie important aspects of goal-directed reward-based learning.


Asunto(s)
Dopamina , Estriado Ventral , Dopamina/metabolismo , Aprendizaje , Recompensa , Neuronas Dopaminérgicas/metabolismo , Estriado Ventral/metabolismo
14.
J Neurosci ; 43(50): 8733-8743, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37852792

RESUMEN

Impulsivity is a behavioral trait that is elevated in many neuropsychiatric disorders. Parkinson's disease (PD) patients can exhibit a specific pattern of reward-seeking impulsive-compulsive behaviors (ICBs), as well as more subtle changes to generalized trait impulsivity. Prior studies in healthy controls (HCs) suggest that trait impulsivity is regulated by D2/3 autoreceptors in mesocorticolimbic circuits. While altered D2/3 binding is noted in ICB+ PD patients, there is limited prior assessment of the trait impulsivity-D2/3 relationship in PD, and no prior direct comparison with patterns in HCs. We examined 54 PD (36 M; 18 F) and 31 sex- and age-matched HC (21 M; 10 F) subjects using [18F]fallypride, a high-affinity D2/3 receptor ligand, to measure striatal and extrastriatal D2/3 nondisplaceable binding potential (BPND). Subcortical and cortical assessment exclusively used ROI or exploratory-voxelwise methods, respectively. All completed the Barratt Impulsiveness Scale, a measure of trait impulsivity. Subcortical ROI analyses indicated a negative relationship between trait impulsivity and D2/3 BPND in the ventral striatum and amygdala of HCs but not in PD. By contrast, voxelwise methods demonstrated a positive trait impulsivity-D2/3 BPND correlation in ventral frontal olfactocentric-paralimbic cortex of subjects with PD but not HCs. Subscale analysis also highlighted different aspects of impulsivity, with significant interactions between group and motor impulsivity in the ventral striatum, and attentional impulsivity in the amygdala and frontal paralimbic cortex. These results suggest that dopamine functioning in distinct regions of the mesocorticolimbic circuit influence aspects of impulsivity, with the relative importance of regional dopamine functions shifting in the neuropharmacological context of PD.SIGNIFICANCE STATEMENT The biological determinants of impulsivity have broad clinical relevance, from addiction to neurodegenerative disorders. Here, we address biomolecular distinctions in Parkinson's disease. This is the first study to evaluate a large cohort of Parkinson's disease patients and age-matched healthy controls with a measure of trait impulsivity and concurrent [18F]fallypride PET, a method that allows quantification of D2/3 receptors throughout the mesocorticolimbic network. We demonstrate widespread differences in the trait impulsivity-dopamine relationship, including (1) loss of subcortical relationships present in the healthy brain and (2) emergence of a new relationship in a limbic cortical area. This illustrates the loss of mechanisms of behavioral regulation present in the healthy brain while suggesting a potential compensatory response and target for future investigation.


Asunto(s)
Enfermedad de Parkinson , Estriado Ventral , Humanos , Dopamina/metabolismo , Enfermedad de Parkinson/metabolismo , Conducta Impulsiva/fisiología , Receptores de Dopamina D2/metabolismo , Estriado Ventral/metabolismo , Tomografía de Emisión de Positrones
15.
Neurobiol Learn Mem ; 205: 107848, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37865262

RESUMEN

In the present studies, we assessed the effect of the 5-HT1A receptor (R) agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) on motor and exploratory behaviors, object and place recognition and dopamine transporter (DAT) and serotonin transporter (SERT) binding in the rat brain. In Experiment I, motor/exploratory behaviors were assessed in an open field after injection of either 8-OH-DPAT (0.1 and 3 mg/kg) or vehicle for 30 min without previous habituation to the open field. In Experiment II, rats underwent a 5-min exploration trial in an open field with two identical objects. After injection of either 8-OH-DPAT (0.1 and 3 mg/kg) or vehicle, rats underwent a 5-min test trial with one of the objects replaced by a novel one and the other object transferred to a novel place. Subsequently, N-o-fluoropropyl-2b-carbomethoxy-3b-(4-[123I]iodophenyl)-nortropane ([123I]FP-CIT; 11 ± 4 MBq) was injected into the tail vein. Regional radioactivity accumulations were determined post mortem with a well counter. In both experiments, 8-OH-DPAT dose-dependently increased ambulation and exploratory head-shoulder motility, whereas rearing was dose-dependently decreased. In the test rial of Experiment II, there were no effects of 8-OH-DPAT on overall activity, sitting and grooming. 8-OH-DPAT dose-dependently impaired recognition of object and place. 8-OH-DPAT (3 mg/kg) increased DAT binding in the dorsal striatum relative to both vehicle and 0.1 mg/kg 8-OH-DPAT. Furthermore, in the ventral striatum, DAT binding was decreased after 3 mg/kg 8-OH-DPAT relative to vehicle. Findings indicate that motor/exploratory behaviors, memory for object and place and regional dopamine function may be modulated by the 5-HT1AR. Since, after 8-OH-DPAT, rats exhibited more horizontal and less (exploratory) vertical motor activity, while overall activity was not different between groups, it may be inferred, that the observed impairment of object recognition was not related to a decrease of motor activity as such, but to a decrease of intrinsic motivation, attention and/or awareness, which are relevant accessories of learning. Furthermore, the present findings on 8-OH-DPAT action indicate associations not only between motor/exploratory behavior and the recognition of object and place but also between the respective parameters and the levels of available DA in dorsal and ventral striatum.


Asunto(s)
Receptor de Serotonina 5-HT1A , Estriado Ventral , Ratas , Animales , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Agonistas de Receptores de Serotonina/farmacología
16.
Nat Commun ; 14(1): 6887, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898623

RESUMEN

The ventral striatum is a reward center implicated in the pathophysiology of depression. It contains islands of Calleja, clusters of dopamine D3 receptor-expressing granule cells, predominantly in the olfactory tubercle (OT). These OT D3 neurons regulate self-grooming, a repetitive behavior manifested in affective disorders. Here we show that chronic restraint stress (CRS) induces robust depression-like behaviors in mice and decreases excitability of OT D3 neurons. Ablation or inhibition of these neurons leads to depression-like behaviors, whereas their activation ameliorates CRS-induced depression-like behaviors. Moreover, activation of OT D3 neurons has a rewarding effect, which diminishes when grooming is blocked. Finally, we propose a model that explains how OT D3 neurons may influence dopamine release via synaptic connections with OT spiny projection neurons (SPNs) that project to midbrain dopamine neurons. Our study reveals a crucial role of OT D3 neurons in bidirectionally mediating depression-like behaviors, suggesting a potential therapeutic target.


Asunto(s)
Islotes Olfatorios , Estriado Ventral , Ratones , Animales , Depresión , Tubérculo Olfatorio , Neuronas Dopaminérgicas
17.
eNeuro ; 10(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37704366

RESUMEN

Dopamine receptor type 2-expressing medium spiny neurons (D2-MSNs) in the medial part of the ventral striatum (VS) induce non-REM (NREM) sleep from the wake state in animals. However, it is unclear whether D2-MSNs in the lateral part of the VS (VLS), which is anatomically and functionally different from the medial part of the VS, contribute to sleep-wake regulation. This study aims to clarify whether and how D2-MSNs in the VLS are involved in sleep-wake regulation. Our study found that specifically removing D2-MSNs in the VLS led to an increase in wakefulness time in mice during the dark phase using a diphtheria toxin-mediated cell ablation/dysfunction technique. D2-MSN ablation throughout the VS further increased dark phase wakefulness time. These findings suggest that VLS D2-MSNs may induce sleep during the dark phase with the medial part of the VS. Next, our fiber photometric recordings revealed that the population intracellular calcium (Ca2+) signal in the VLS D2-MSNs increased during the transition from wake to NREM sleep. The mean Ca2+ signal level of VLS D2-MSNs was higher during NREM and REM sleep than during the wake state, supporting their sleep-inducing role. Finally, optogenetic activation of the VLS D2-MSNs during the wake state always induced NREM sleep, demonstrating the causality of VLS D2-MSNs activity with sleep induction. Additionally, activation of the VLS D1-MSNs, counterparts of D2-MSNs, always induced wake from NREM sleep, indicating a wake-promoting role. In conclusion, VLS D2-MSNs could have an NREM sleep-inducing function in coordination with those in the medial VS.


Asunto(s)
Neuronas Espinosas Medianas , Estriado Ventral , Ratones , Animales , Receptores de Dopamina D2/metabolismo , Sueño REM , Estriado Ventral/metabolismo , Sueño , Receptores de Dopamina D1/metabolismo , Cuerpo Estriado/metabolismo , Ratones Transgénicos
18.
Int J Neuropsychopharmacol ; 26(9): 627-638, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37579016

RESUMEN

BACKGROUND: Previous studies have focused on both ventral striatum (VS) and dorsal striatum (DS) in characterizing dopaminergic deficits in addiction. Animal studies suggest VS and DS dysfunction each in association with impulsive and compulsive cocaine use during early and later stages of addiction. However, few human studies have aimed to distinguish the roles of VS and DS dysfunction in cocaine misuse. METHODS: We examined VS and DS resting-state functional connectivity (rsFC) of 122 recently abstinent cocaine-dependent individuals (CDs) and 122 healthy controls (HCs) in 2 separate cohorts. We followed published routines in imaging data analyses and evaluated the results at a corrected threshold with age, sex, years of drinking, and smoking accounted for. RESULTS: CDs relative to HCs showed higher VS rsFC with the left inferior frontal cortex (IFC), lower VS rsFC with the hippocampus, and higher DS rsFC with the left orbitofrontal cortex. Region-of-interest analyses confirmed the findings in the 2 cohorts examined separately. In CDs, VS-left IFC and VS-hippocampus connectivity was positively and negatively correlated with average monthly cocaine use in the prior year, respectively. In the second cohort where participants were assessed with the Barratt Impulsivity Scale (BIS-11), VS-left IFC and VS-hippocampus connectivity was also positively and negatively correlated with BIS-11 scores in CDs. In contrast, DS-orbitofrontal cortex connectivity did not relate significantly to cocaine use metrics or BIS-11 scores. CONCLUSION: These findings associate VS rsFC with impulsivity and the severity of recent cocaine use. How DS connectivity partakes in cocaine misuse remains to be investigated.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Estriado Ventral , Humanos , Trastornos Relacionados con Cocaína/diagnóstico por imagen , Conducta Impulsiva , Estriado Ventral/diagnóstico por imagen , Corteza Prefrontal , Imagen por Resonancia Magnética
19.
Sci Adv ; 9(32): eadh2831, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556536

RESUMEN

Individuals often assess past decisions by comparing what was gained with what would have been gained had they acted differently. Thoughts of past alternatives that counter what actually happened are called "counterfactuals." Recent theories emphasize the role of the prefrontal cortex in processing counterfactual outcomes in decision-making, although how subcortical regions contribute to this process remains to be elucidated. Here we report a clear distinction among the roles of the orbitofrontal cortex, ventral striatum and midbrain dopamine neurons in processing counterfactual outcomes in monkeys. Our findings suggest that actually gained and counterfactual outcome signals are both processed in the cortico-subcortical network constituted by these regions but in distinct manners and integrated only in the orbitofrontal cortex in a way to compare these outcomes. This study extends the prefrontal theory of counterfactual thinking and provides key insights regarding how the prefrontal cortex cooperates with subcortical regions to make decisions using counterfactual information.


Asunto(s)
Neuronas Dopaminérgicas , Estriado Ventral , Imaginación/fisiología , Corteza Prefrontal/fisiología , Mesencéfalo
20.
Sci Rep ; 13(1): 9953, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337085

RESUMEN

A growing body of research has placed the ventral striatum at the center of a network of cerebral regions involved in anticipating rewards in healthy controls. However, little is known about the functional connectivity of the ventral striatum associated with reward anticipation in healthy controls. In addition, few studies have investigated reward anticipation in healthy humans with different levels of schizotypy. Here, we investigated reward anticipation in eighty-four healthy individuals (44 females) recruited based on their schizotypy scores. Participants performed a variant of the Monetary Incentive Delay Task while undergoing event-related fMRI.Participants showed the expected decrease in response times for highly rewarded trials compared to non-rewarded trials. Whole-brain activation analyses replicated previous results, including activity in the ventral and dorsal striatum. Whole-brain psycho-physiological interaction analyses of the left and right ventral striatum revealed increased connectivity during reward anticipation with widespread regions in frontal, parietal and occipital cortex as well as the cerebellum and midbrain. Finally, we found no association between schizotypal personality severity and neural activity and cortico-striatal functional connectivity. In line with the motivational, attentional, and motor functions of rewards, our data reveal multifaceted cortico-striatal networks taking part in reward anticipation in healthy individuals. The ventral striatum is connected to regions of the salience, attentional, motor and visual networks during reward anticipation and thereby in a position to orchestrate optimal goal-directed behavior.


Asunto(s)
Trastorno de la Personalidad Esquizotípica , Estriado Ventral , Femenino , Humanos , Trastorno de la Personalidad Esquizotípica/diagnóstico por imagen , Encéfalo/fisiología , Motivación , Recompensa , Mapeo Encefálico , Estriado Ventral/diagnóstico por imagen , Imagen por Resonancia Magnética , Anticipación Psicológica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...